Thermodynamic studies on the interaction of the third complement component and its inhibitor, compstatin.
نویسندگان
چکیده
Compstatin is a 13-residue cyclic peptide that inhibits complement activation by binding to complement component, C3. Although the activity of compstatin has been improved severalfold using combinatorial and rational design approaches, the molecular basis for its interaction with C3 is not yet fully understood. In the present study, isothermal titration calorimetry was employed to dissect the molecular forces that govern the interaction of compstatin with C3 using four different compstatin analogs. Our studies indicate that the C3-compstatin interaction is an enthalpy-driven process. Substitution of the valine and histidine residues at positions 4 and 9 with tryptophan and alanine, respectively, resulted in the increase of enthalpy of the interaction, thereby increasing the binding affinity for C3. The data also suggest that the interaction is mediated by water molecules. These interfacial water molecules could be the source for unfavorable entropy and large negative heat capacity changes observed in the interaction. Although part of the negative heat capacity changes could be accounted for by the water molecules, the rest might be resulting from the conformational changes in C3 and/or compstatin up on binding. Finally, we propose based on the pK(a) values determined from the protonation studies that histidine on compstatin participates in protonation changes and contributes to the specificity of the interaction between compstatin and C3. These protonation changes vary significantly between the binding of different compstatin analogs to C3.
منابع مشابه
Compstatin, a peptide inhibitor of complement, exhibits species-specific binding to complement component C3.
Although activation of complement protein C3 is essential for the generation of normal inflammatory responses against pathogens, its unregulated activation during various pathological conditions leads to host cell damage. Previously we have identified a 13-residue cyclic peptide, Compstatin, that inhibits C3 activation. In this study, we have examined the species-specificity of Compstatin. Bimo...
متن کاملDevelopment of a new pharmacophore model that discriminates active compstatin analogs.
Compstatin and its active peptide analogs can potentially be used for therapeutic purposes because their binding to the third component of complement prohibits its conversion into the proteolytically activated form of the third component of complement, thus inhibiting complement cascades in all three complement pathways. Mallik and Morikis built three quasi-dynamic pharmacophore models for comp...
متن کاملBinding kinetics, structure-activity relationship, and biotransformation of the complement inhibitor compstatin.
We have previously identified a 13-residue cyclic peptide, Compstatin, that binds to complement component C3 and inhibits complement activation. Herein, we describe the binding kinetics, structure-activity relationship, and biotransformation of Compstatin. Biomolecular interaction analysis using surface-plasmon resonance showed that Compstatin bound to native C3 and its fragments C3b and C3c, b...
متن کاملCompstatin: a complement inhibitor on its way to clinical application.
Therapeutic modulation of the human complement system is considered a promising approach for treating a number of pathological conditions. Owing to its central position in the cascade, component C3 is a particularly attractive target for complement-specific drugs. Compstatin, a cyclic tridecapeptide, which was originally discovered from phage-display libraries, is a highly potent and selective ...
متن کاملHydrophobic effect and hydrogen bonds account for the improved activity of a complement inhibitor, compstatin.
Tryptophans at positions 4 and 7 of compstatin, a peptide complement inhibitor, are crucial for its interaction with C3. However, the nature of their involvement has not been studied to date. Here we investigate the molecular forces involved in the C3-compstatin interactions, mediated by aromatic residues, by incorporating in these two positions various tryptophan analogues (5-methyltryptophan,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 53 شماره
صفحات -
تاریخ انتشار 2004